Digital communications

Information and Entropy

Course Syllabus

-Information and entropy Today: -Encodings -Errors (detect, correct) -What is information? -LTI systems -How do we measure it? -Bits to World -Why does it matter? -World to Bits -Combining it all

Independent Identically Distributed Systems

Event e_i happens with probability p_i.

Entropy of the source: $H = \sum p(x)I(x)$

Huffman trees

iid source:

X .4 Y .2 Z .3

W .1

Huffman tree:

Take the two lowest nodes and assemble them into a new node.While possible, repeat.

Problems of Huffman trees

- -Probabilities are not always known
- -They may change over time -might not be iid

Lempel-Ziv-Welch encoding (LZW)

abcabcabcabcabc Table:

- a 0
- b 1
- c 2

Worked out on the board

LZW summary

-No prior knowledge -Gets better over time -Adaptive

-Lossless

How about not lossless? For another time...